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By
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ABSTRACT

The results of a performance survey for the application of the
product-improved Saturn V launch vehicles to various escape energies
are presented. Two upper stage (S-II/S-IVB) propulsion systems (J-2
and J-2S) were investigated. Exchange ratios of payload with respect
to vehicle parameters versus Cx (twice the energy per unit mass) are
presented for a Cs range of 0 to 125 km®/sec®, The effect of booster
variations and proposed vehicle improvement for different missions can
be mapped into the payload through the judicious use of the exchange
ratios. These data are primarily for use as a guide to payload planning
for various earth escape and interplanetary missions. The results of
this performance survey are presented graphically.
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DEFINITION OF SYMBOLS

Symbol Definition

WO, lift-off weight at ground ignition

Fi first stage total sea level thrust

ISP first stage sea level specific impulse

WD, first stage dead weight

Fo second stage total vacuum thrust

ISP> second stage vacuum specific impulse

WD second stage dead weight

Fs third stage vacuum thrust

ISP third stage vacuum specific impulse

WD = third stage dead weight

IU instrument unit

T/WO,, thrust-to-weight ratio

J-28 J-2 simplified propulsion system

AZ launch azimuth

Cs twice the energy per unit mass or hyperbolic excess speed
squared

PLD net payload

CAT axial force coefficient




TECHNICAL MEMORANDUM X-53639

A PERFORMANCE STUDY FOR THE APPLICATION OF THE
SATURN V TO HIGH ENERGY EARTH ESCAPE MISSTIONS

SUMMARY

The results of a performance survey for application of a product-
improved Saturn V launch vehicle to various escape energies are presented
in this report. Two upper stage (S-II/S-IVB) propulsion systems (J-2 and
J-28) were investigated. The nominal flight profile was S-IC/S-II/S-IVB
to a one~hundred-nautical-mile parking orbit with reignition of the S-IVB
stage to inject the payload to the desired energy value. Because the
first-burn propellant of the S-IVB stage optimized to zero for high energy
values, special flight profiles were investigated to extend the payload
capability to higher energy values. These are S-II injection into a
higher circular orbit than nominal, and a single burn S-IVB stage out of
orbit,.

Exchange ratios of payload with respect to vehicle parameters versus
Cxs (twice the energy per unit mass) are presented for a Cs range of 0 to

125 km%/sec?, The effect of booster variations and proposed vehicle
improvements for different missions can be mapped into the payload through
judicious use of the exchange ratios. These data are primarily for use

as a guide to payload planning for various earth escape and interplanetary
missions. The results of this performance survey are presented graphically.

I, INTRODUCTION

During the past decade, the major goal of the national space pro-
gram has been the exploration of near-earth space with a prime goal of
landing two men on the moon and returning them to earth by 1970. As the
Apollo program comes nearer this goal, the interest of NASA planners to
send large payloads beyond the earth/moon system has greatly increased.

A question often asked is '"What is the payload capability of the Saturn V
launch vehicle to high energy missions?'" This investigation indicates
that the Saturn V launch vehicle, developed for the Apollo program, has
the capability with minimum modification (slosh baffles in the S-1IVB
stage) of placing space probes to the outer reaches of the solar system.



A product-improved Saturn V launch vehicle, designated as SA-516,
has been defined for two configurations. One configuration, the Apollo
geometry configuration, is a man-rated vehicle; i.e., the Launch Escape
System is available for booster aborts. The second configuration, the
MSFC Nose Cone configuration, is an unmanned flight version. The nose
cone is jettisoned in orbit for the performance data presented, and no
cylindrical payload shroud section is defined. When a mission is
defined, the effect of the payload shroud upon the injection payload
can be calculated from the exchange ratios contained in Appendix B, as
can other vehicle perturbations.

Two upper stage (S-II1/S-IVB) propulsion systems were investigated
for each configuration, the first being the standard J-2 engine propul-
sion as presently defined for the Apollo program. The second system
investigated is the J-2 simplified engine (J-2S) which displays a gain
in specific impulse while reducing the respective S-II and S-IVB stage
dead weights. The performance characteristics of the respective propul-
sion systems are given in Appendix C.

These performance data are applicable to single launch Saturn V's,
IT, ASSUMPTIONS USED FOR PERFORMANCE CALCULATIONS

The following items list the assumptions used for the nominal per-
formance calculations:

(1) Configuration aerodynamic data are obtained from refer-
ences 1 and 2 and are contained in Appendix C.

(2) Vehicle weight data are taken from reference 3 and are
contained in tables 2 through 5 of Appendix C.

(3) Launch from Kennedy Space Center (KSC), Pad 34, geodetic
latitude = 28°31'17.5064", and geodetic longitude = -80°33'40.8869".
Firing azimuth = 70° measured from north to south over east.

(4) All stages are filled to propellant capacity and T/WO,
and trajectory shaping optimized to yield maximum payload as a function
of mission energy.

(5) The vehicle lifted off with a vertical rise of twelve
seconds. A constant pitch rate is initiated and executed until thirty-
five seconds of flight when total angle of attack is set to zero for
the remainder of the first stage flight.




(6) The first stage exercised an engine shutdown sequence of
one - four with a four-second interval.

(7) Three and eight-tenths seconds coast is allowed between
the first stage final cut-off and second stage ignition. The atmosphere
is dropped from the calculations at second stage ignition.

(8) A programmed mixture ratio is used during the second
stage burn to increase performance and use more propellant tank volume,

(9) The large S-IC/S-II interstage is dropped thirty seconds
after S-IC final cut-off on both configurations,

(10) The Launch Escape System is jettisoned thirty-five seconds
after S-IC final cut-off for the Apollo configuration only.

(11) The nose cone for the MSFC Nose Cone configuration was
jettisoned in parking orbit.

(12) Parking orbit altitude equals one hundred nautical miles
except for the special trajectory profiles where the S-II stage places
a fully loaded S-IVB/IU/Payload into an optimum altitude parking orbit
as a function of Cs, The optimum altitude is defined as that which will
yield the maximum payload while depleting the S-IVB stage propellants
minus reserves to reach the specified energy level.

(13) Boil-off and attitude control losses, calculated for four
and one-half hour parking orbit coast, remained constant for all energy
levels as listed in tables 2 through 5, Appendix C.

(14) Upper stage thrust angles were optimized via the steepest
ascent technique over a rotating 1960 Fischer Ellipsoid earth model with
the fourth-order gravity function.

(15) Flight performance reserves were calculated equal to
.75 percent of the total vehicle characteristic velocity for Cz = 0
(local escape) to 1 percent of the total vehicle characteristic veloc-
ity at Cz = 125 km®/sec®. This variation was calculated by using a 30
launch vehicle error analysis at various values of Cs.

(16) Flight geometry reserves were calculated equal to sixty
meters per second.

(17) Net payload is defined as the weight forward of the
instrument unit (IU) at final injection,




I1T, DESCRIPTION - EXPLANATION OF RESULTS

The results of this study are presented in graphical form. The
figures are self-explanatory but care is to be used in extracting data,
as explained in Section IV.

Figures A-1 and A-2 are drawings of the Apollo configuration and
the MSFC Nose Cone configuration, respectively. It will be noticed that
total height of the MSFC Nose Cone configuration has not been specified
because this will depend on the payload packaging procedure used. For
the purpose of this study, no cylindrical payload section was assumed;
i.e., the nose cone is attached directly to the instrument unit and is
jettisoned in parking orbit, The effect on payload of the requirement
of a cylindrical payload fairing will be discussed in Section IV. Fig-
ures A-3 and A-4 display the net payload at injection for the Apollo and
MSFC Nose Cone configurations, respectively, as a function of Cs for the
two types of upper stage propulsion systems investigated. The solid pay-
load curves of the graphs denote mission profiles where the S-IVB stage
is suborbitally burned for injection into orbit and reignited to reach
the desired Cs value. The dashed portion of each curve denotes profiles
where the S-II stage injects into an optimum altitude circular parking
orbit and the S-IVB performs a single burn to obtain the final Cs value.
Figures A-5 and A-6 are plots of optimum T/WO, at liftoff versus Cs for
both configurations with J-2 and J-2S propulsion, respectively. Figure
A-7 displays the ratio of S-IVB first burn into parking orbit propellants
to the total stage propellant capacity,

Figure A-8 is a plot of optimum orbit altitude versus Cs for values
of Cx greater than 105 km®/sec® for J-2S propulsion and 125 km®/sec® for
standard J-2 propulsion systems. The weight savings resulting from
removing the requirement for restart capability from the S-IVB stage
have not been added to the payloads shown, but any S-IVB stage weight
reduction is directly additive to payload.

IV. EXCHANGE RATIOS

Exchange ratios of payload with respect to various vehicle param-
eters are presented in figures B-1 to B-12. These exchange ratios are
applicable only to flight profiles where the S-IVB stage is suborbitally
burned into parking orbit and reignited to reach the desired C3 value.

Figure A-7 shows that the upper C5 limit of the exchange ratios for
configurations with J-2S propulsion is C3 = 105 km®/sec® and Cx = 125
kmZ/sec® for the configurations using the standard J-2 propulsion system,
The payload effects of the various exchange ratios are additive within




the specified limits and are applicable to both configurations with
either J-2 or J-2S propulsion systems. The exception, naturally, is
the exchange ratios and effects of the nose cone and payload shroud.
Figures B-9 and B-10 are not applicable to the Apollo configuration,

The exchange ratios for jettisoning the nose cone and shroud
weights (where desired) are special cases where much care is to be used.
If the nose cone is jettisoned at an altitude before orbit insertion,
the payload gain can be calculated by multiplying the percentage of pay-
load gain for the given Cz value from figure B-9 and the nominal payload
from figure A-4. If an additional weight greater than the nominal 2700-
pound nose cone is to be jettisoned, the effect can be calculated by
multiplying the difference in this weight and the 2700-pound nose cone
weight and the respective exchange ratio from figure B-10 and subtract-
ing this from the previously calculated payload. For an increased weight
jettisoned in parking orbit, the payload loss due to shroud weight
greater than 2700 pounds is then to be subtracted from the nominal pay-
load from figure A-4. These types of calculations, when applicable,
must be performed before applying the other exchange ratios. When
exercising an increment in launch azimuth (figure B-12), all effects of
vehicle perturbations (propulsion, weights, etc.) must be exercised

before calculating the payload increment due to a launch azimuth variation.

V. CONCLUSIONS

The results of this study show the Saturn V three-stage launch
vehicle capable of handling sizeable payloads for high energy escape
missions. The defined vehicle displays a capability of injecting approx-
imately 25,000 pounds into a Jupiter probe transfer mission (Cs = 80 km=/
sec®) using the standard J-2 propulsion systems. The J-2S propulsion
system for this energy results in a payload gain of approximately 3,400
pounds.

All mission profiles displayed will probably require a relocation
of the slosh baffles in the S-IVB stage because of the two-burn propel-
lant split variation as displayed in figure A-7, Mission energies which
require a fully loaded S-IVB stage burned from parking orbit are feasible
by injecting the fully loaded S-1IVB/IU/Payload into an optimum altitude
orbit with the S-II stage. This type of profile will require only a
single burn S-IVB, and the weight saved by removing the restart from
the S-IVB can be converted into payload.



The exchange ratios display a need for greater thrust levels and
higher specific impulse values for all energies. The most worthy
candidate for an increased thrust is the S-II stage, while the best
candidate for a specific impulse increase is the S-IC stage.

The J-2S propulsion system (now being investigated by NASA planners)
shows a good possibility of increasing the Saturn V payload capability.
When applied to the S-II and S-IVB stages, payload gains range from
6 percent at Cs = 0 (local escape) to 17 percent at Cs = 100 km?/secZ,




APPENDIX A

Performance Results
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Vehicle Data
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TABLE 1

Propulsion Characteristics for Saturn Launch Vehicle SA-516

Number of Engine Thrus t/Engine Specific Mix?ure
Stage . . , Impulse Ratio
Engines Designation (1b)

(sec) | We/w,
S-IC 5 F-1 1,522,000% 264, 5% 2.27:1
S 5 J-2 204,080 425 5.0:1
228,915 422.1 5.5:1

189,113 426 .47 4.7:1

S-1VB 1 J-2 205,000 427 5.0:1
S- 5 J-28 204,080 430.5 5.0:1
228,915 427.6 5.5:1

189,113 431.97 4.7:1

S-1VB 1 J-28 205,000 432.5 5.0:1

34

*Denotes Sea Level Values,




TABLE 2

Weight Summary for Saturn Launch Vehicle SA-516

Apollo Configuration with Standard J-2 Engines in S-II/S-IVB Stages

Stage Item Weight
S-1IC Mainstage Propellant Capacity 4,598,260
No Purge (Liftoff to Cutoff) 32
S~-IT Insulation Purge Gas 120
Frost (Total) 1,400
Inboard Engine Thrust Decay Propellant 1,770
Outboard Engines Thrust Decay Propellant 6,760
Stage at Separation 325,013
S-IC/S-1I Interstage (Small) 1,400
S-1I1 Ullage Rocket Propellant 2,720
Thrust Buildup Propellant 1,836
S-IC/S-II Interstage (Large) 9,220
Launch Escape System 8,300
Mainstage Propellant Capacity W/PMR 970,000
Thrust Decay Propellant 360
Stage at Separation 93,031
S-1I/S-1IVB Interstage 7,682
S-IVB Aft Frame (Separated with Interstage) 48
S-1VB Ullage Propellant 122
H- in Start Tank 4
First Thrust Buildup Propellant 360
Burn Ullage Rocket Gases 127
APS Propellant - Power Roll (First Burn) 18
Thrust Decay Propellant 94
Orbital Propellant Below Engine Valve 39
Coast Hs + He Vented in Orbit 3,016
APS Propellant Used in Orbit 438
LOX/Hydrogen Burner Propellant 16
Oxidizer Vented in Orbit 130
Second Ho in Start Tank 6
Burn Thrust Buildup Propellant 360
Thrust Decay Propellant 94
Total Mainstage Capacity (Incl. Reserves¥) 230,000
Stage at Separation 26,108
Instrument Unit 4,050

ale
w

Reserves calculated as function of mission profile,
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TABLE 3

Weight Summary for Saturn Launch Vehicle SA-516

Apollo Configuration with J-2S Engines in S-II/S-IVB Stages

Stage Item Weight
S-1IC Mainstage Propellant Capacity 4,598,260
No Purge (Liftoff to Cutoff) 32
S-ITI Insulation Purge Gas 120
Frost (Total) 1,400
Inboard Engine Thrust Decay Propellant 1,770
Outboard Engines Thrust Decay Propellant 6,760
Stage at Separation 325,013
S-IC/S-IT Interstage (Small) 1,400
S-1I Ullage Rocket Propellant 2,720
Thrust Buildup Propellant 1,836
$-IC/S-11 Interstage (Large) 9,220
Launch Escape System 8,300
Mainstage Propellant Capacity W/PMR 970,000
Thrust Decay Propellant 360
Stage at Separation 89,931
S-1I/S-IVB Interstage 7,682
S-IVB Aft Frame (Separated with Interstage) 48
S-1VB Ullage Propellant 122
H- in start Tank 4
First Thrust Buildup Propellant 360
Burn Ullage Rocket Cases 127
APS Propellant-Power Roll (First Burn) 18
Thrust Decay Propellant 94
Orbital Propellant Below Engine Valve 39
Coast Ho + He Vented in Orbit 3,016
APS Propellant Used in Orbit 438
LOX/Hydrogen Burner Propellant 16
Oxidizer Vented in Orbit 130
Second H- in Start Tank 6
Burn Thrust Buildup Propellant 360
Thrust Decay Propellant 94
Total Mainstage Capacity (Incl. Reserves¥) 230,000
Stage at Separation 25,208
Instrument Unit 4,050

Reserves calculated as function of mission profile.
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TABLE 4

Weight Summary for Saturn Launch Vehicle SA-516
MSFC Nose Cone Configuration with Standard J-2 Engines
in S-II/S-IVB Stages

Stage Item Weight
S-IC Mainstage Propellant Capacity 4,598,260
No Purge (Liftoff to Cutoff) 32
S-II Insulation Purge Gas 120
Frost (Total) 1,400
Inboard Engine Thrust Decay Propellant 1,770
Outboard Engines Thrust Decay Propellant 6,760
Stage at Separation 325,013
S-IC/S-1I Interstage (Small) 1,400
S-11 Ullage Rocket Propellant 2,720
Thrust Buildup Propellant 1,836
S-I1C/S-1I Interstage (Large) 9,220
Mainstage Propellant Capacity W/PMR 970,000
Thrust Decay Propellant 360
Stage at Separation 93,031
S-1I/S-1IVB Interstage 7,682
S-IVB Aft Frame (Separated with Interstage) 48
S-1IVB Ullage Propellant 122
H- in Start Tank 4
First Thrust Buildup Propellant 360
Burn Ullage Rocket Cases 127
APS Propellant - Power Roll (First Burn) 18
Thrust Decay Propellant 94
Orbital Propellant Below Engine Valve 39
Coast Ho + H, Vented in Orbit 3,016
APS Propellant Used in Orbit 438
LOX/Hydrogen Burner Propellant 16
Oxidizer Vented in Orbit 130
Payload Fairing 2,700
Second H- in Start Tank 6
Burn Thrust Buildup Propellant 360
Thrust Decay Propellant 94
Total Mainstage Capacity (Incl. Reserves¥) 230,000
Stage at Separation 26,108
Insirumeni Uuli 4 050

e
W

Reserves calculated as function of mission profile.




TABLE 5

Weight Summary for Saturn Launch Vehicle SA-516

MSFC Nose Cone Configuration with J-2S Engines in S-II/S-IVB Stages

Stage Ttem Weight
S-1IC Mainstage Propellant Capacity 4,598,260
N5 Purge (Liftoff to Cutoff) 32
S-1IT Insulation Purge Gas 120
Frost (Total) 1,400
Inboard Engine Thrust Decay Propellant 1,770
Outboard Engines Thrust Decay Propellant 6,760
Stage at Separation 325,013
S-IC/S-II Interstage (Small) 1,400
S-11 Ullage Rocket Propellant 2,720
Thrust Buildup Propellant 1,836
S-IC/S-I1 Interstage (Large) 9,220
Mainstage Propellant Capacity W/PMR 970,000
Thrust Decay Propellant 360
Stage at Separation 89,931
S~-1I/S-1IVB Interstage 7,682
S-IVB Aft Frame (Separated with Interstage) 48
S~-1VB Ullage Propellant 122
H, in Start Tank 4
First Thrust Buildup Propellant 360
Burn Ullage Rocket Cases 127
APS Propellant - Power Roll (First Burn) 18
Thrust Decay Propellant 94
Orbital Propellant Below Engine Valve 39
Coast Hs + He Vented in Orbit 3,016
APS Propellant Used in Orbit 428
LOX/Hydrogen Burner Propellant 16
Oxidizer Vented in Orbit 130
Payload Fairing 2,700
Second Ho in Start Tank 6
Burn Thrust Buildup Propellant 360
Thrust Decay Propellant 94
Total Mainstage Capacity (Incl. Reserves¥) 230,000
Stage at Separation 25,208
Instrument Unit 4,050

A

Reserves calculated as function of mission profile.
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